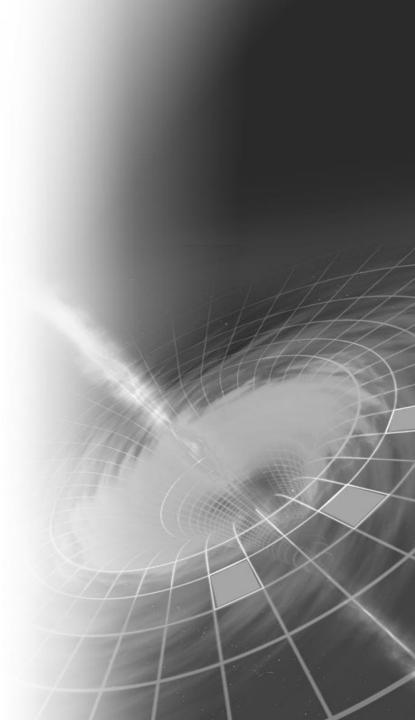
Bachelor-Programm


Compilerbau

im SoSe 2014

Prof. Dr. Joachim Fischer Dr. Klaus Ahrens Dipl.-Inf. Ingmar Eveslage

fischer@informatik.hu-berlin.de

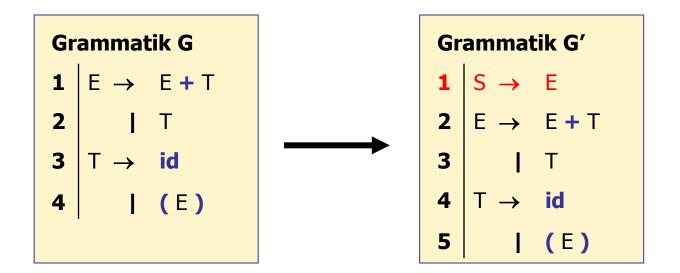
Position

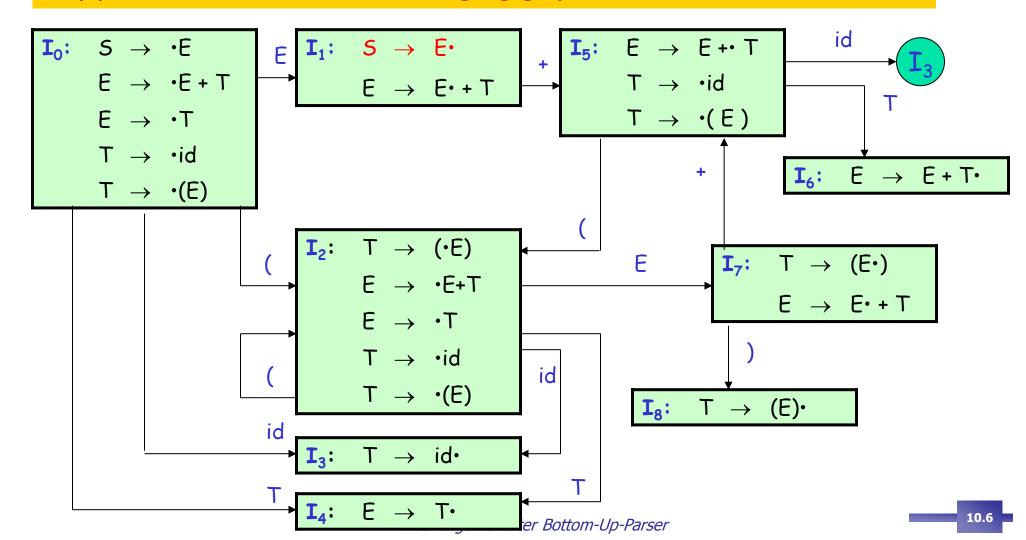
- Teil IDie Programmie
- Teil II Methodische Grund
- Teil IIIEntwicklung ein

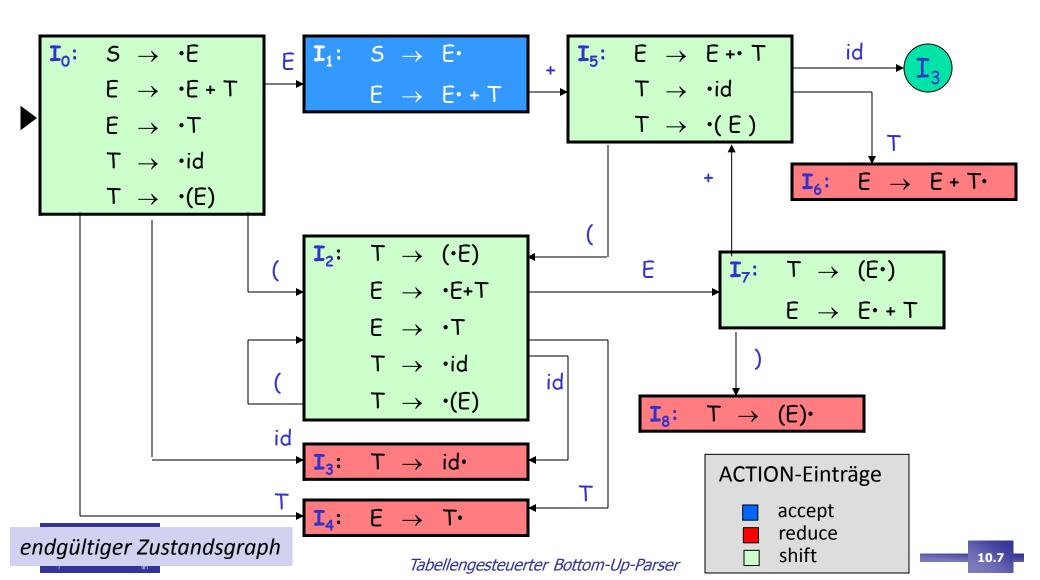
- Kapitel 1Compilationsprozess
- Kapitel 2
 Formalismen zur Sprachbeschreibung
- Kapitel 3 Lexikalische Analyse: der Scanner
- Kapitel 4Syntaktische Analyse: der Parser
- Kapitel 5 Parsergeneratoren: Yacc, Bison
- Kapitel 6Statische Semantikanalyse
- Kapitel 7 Laufzeitsysteme
- Kapitel 8 Ausblick: Codegenerierung

- 4.1Einführung in die Syntaxanalyse
- 4.2Restrukturierung von Grammatiken
- 4.3LL-Parser
- 4.4 Beispiel: Ein-Pass-Compiler (Parser, Übersetzer)
- 4.5Tabellengesteuerter LL-Parser
- 4.6Tabellengesteuerter LR-Parser

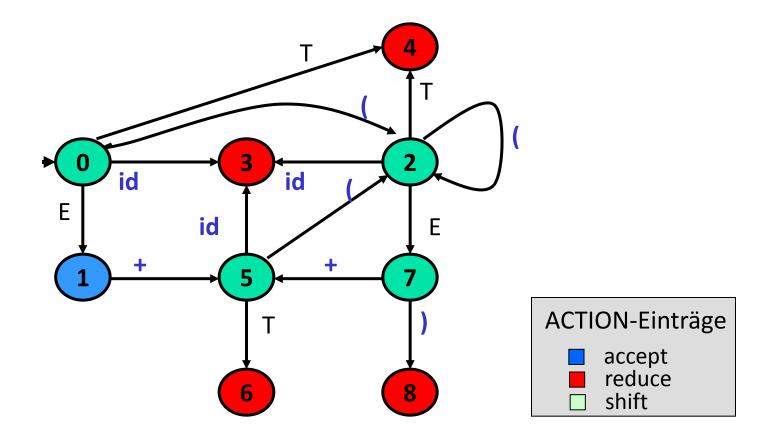
4.6.1 Allgemeine Betrachtung


- Allgemeines Prinzip von Shift-Reduce-Verfahren
- Klassifikation von LR-Analysemethoden/Grammatiken
- Präzisiertes Automatenmodell eines beliebigen LR-Parsers
- Arbeitsweise an einem Beispiel
- Konstruktionsvarianten von LR-Syntaxanalysetabellen im Überblick


4.6.2 LR(0)-Syntaxanalyse-Verfahren


- LR(0)-Elemente und Idee zur Zustandsbildung
- Die Operatoren Closure0 und Goto0
- Kanonische LR(0)-Kollektion, charakteristischer Automat und Übergangstabellenkonstruktion für einen LR(0)-Parser
- Beispiel: Konstruktion eines LR(0)-Parsers
- LR(0)-Konfliktbeispiel

ad (1): Hinzufügen einer neuen **Startproduktion** zur Ausgangsgrammatik



ad (2): Konstruktion des Zustandsübergangsgraphen des CFSM für Grammatik G'

kompakter Zustandsgraph des charakteristischen Automaten (als DFA)

Allgemeiner Tabellenkonstruktionsablauf

unabhängig von konkreter LR-Technik:

- (1) Hinzufügen einer neuen **Startproduktion** (S' → S) zu G: neue Grammatik G'
- (2) Konstruktion des Zustandsübergangsgraphen des CFSM für Grammatik G'

Zustände entstehen durch Mengenbildung von LR(k)-Elementen

demonstriert bislang für LR(0)_Elemente

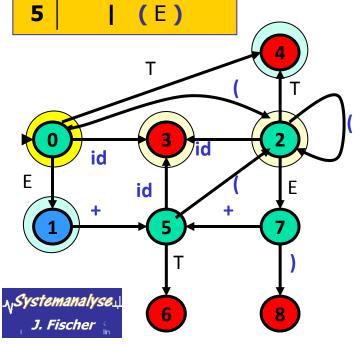
Einsatz:

LR(0)-Element einer Grammatik G ist eine Produktion von G werfahrensspezifisch mit einer Bearbeitungs-Markierung

(dargestellt als Punkt) in der rechten Seite: z.B. A → X•YZ

(3) Ableitung der **Syntaxanalysetabelle** aus dem Zustandsübergangsgraphen des DFA

noch offen: sowohl allgemein als auch am Beispiel


Vorgehen bei der Konstruktion LR(0)-Parsers

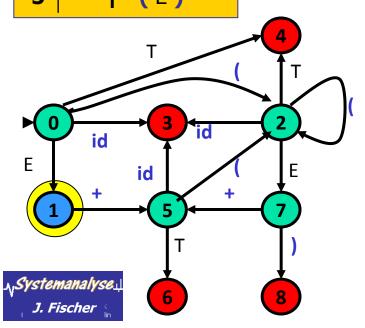
- **ad (3):** Ableitung der **Syntaxanalysetabelle** aus dem konstruierten CFSM-Automaten
- Konstruktion der **Mengenkollektion** M= {I₀, I₁, ..., I_n} von LR(0)-Elementen für G´ bei Identifikation der **Zustände i** des CFSM aus I_i.
- Bestimmung der **Aktionen** für einen **Zustand I**_i:
 - a) $[A \rightarrow \alpha \bullet a \beta] \in I_i$ und $goto_0(I_i, a) = I_k$, dann **ACTION**[i, a]:= "shift k" a muss dabei ein **Terminalsymbol** sein
 - b) $[A \rightarrow \alpha \bullet] \in I_i \text{ und } A \neq S', \text{ dann } \mathbf{ACTION} [i, \mathbf{a}] := "reduce } A \rightarrow \alpha"$ für alle Terminalsymbole \mathbf{a} von \mathbf{G}' ACHTUNG:
 - c) $[S' \rightarrow S \bullet] \in I_i$, dann **ACTION** [i, \$] := "accept"
- wenn $goto_0(I_i, A) = I_k$ dann **GOTO** [i, A]:= k für **alle Nichtterminale** A von G´
- setze undefinierte Einträge in ACTION und GOTO auf "error"
- Anfangszustand (Zustand 0) des Parsers (Kellerautomat) ist closure₀($[S' \rightarrow \bullet S]$

Spezifik des LR(0)-Verfahrens

Beispiel: Konstruktion der LR(0)-Syntaxtabelle (1)

Grammatik 1 S → E 2 E → E + T 3 I T 4 T → id

Zust			ACTIO		GOTO			
	id	()	+	\$	S	Е	Т
0	s3	s2	-	-	-	-	1	4
1	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-
8	-	-	-	-	_	-	-	-


Beispiel: Konstruktion der LR(0)-Syntaxtabelle (2)

Grammatik

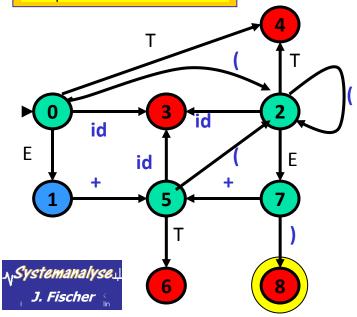
2	Е	\rightarrow	E-	⊦ T

3 | | 1

5 | (E)

Zust			ACTIO		GOTO			
	id	()	+	\$	S	Е	Т
0	s3	s2	-	-	-	-	1	4
1	-	-	-	s5	acc	-	-	-
2	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-

Beispiel: Konstruktion der LR(0)-Syntaxtabelle (9)


Grammatik1 | S → E

 $2 \mid E \rightarrow E + T$

3 | T

4 | T → id

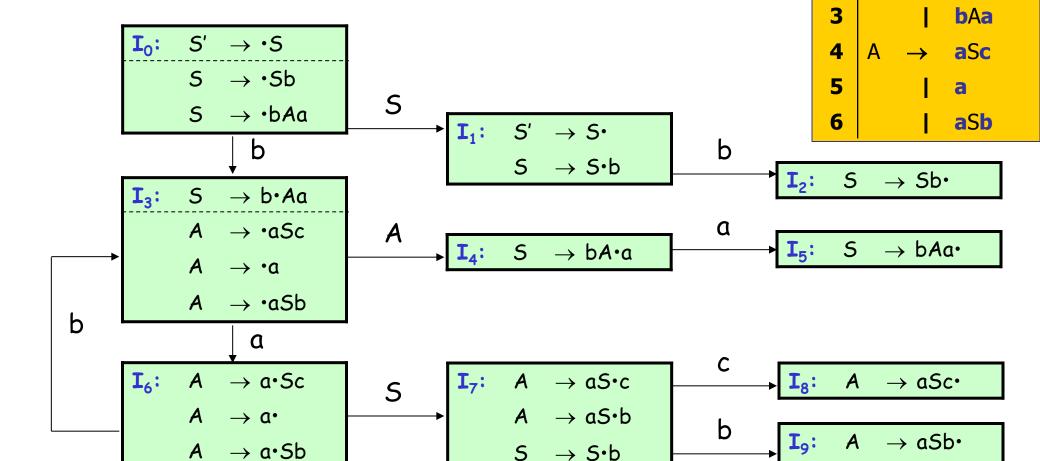
5 | (E)

Zust			ACTIO		GOTO			
	id	()	+	\$	S	Е	Т
0	s3	s2	-	-	-	-	1	4
1	-	-	-	s5	acc	-	-	-
2	s3	s2	-	-	-	-	7	4
3	r4	r4	r4	r4	r4	-	-	-
4	r3	r3	r3	r3	r3	-	-	-
5	s3	s2	-	-	-	-	-	6
6	r2	r2	r2	r2	r2	-	-	-
7	-	-	s8	s5	-	-	-	-
8	r5	r5	r5	r5	r5	-	-	-

LR(0)-Grammatikeigenschaft und mögliche Konflikte in der Syntax-Tabelle

- Falls die LR(0)-Syntaxtabelle **ACTION**-Einträge hat, die **mehrfach** belegt sind, ist die Grammatik **nicht** vom Typ **LR(0)**
- Phänomen wird auch als Existenz nicht adäquater Zustände bezeichnet
- zwei Konfliktmöglichkeiten
 - Shift-Reduce: beide Operationen (shift und reduce) sind auf der selben Elementmenge möglich
 - Reduce-Reduce: mehr als eine Reduktionsmöglichkeit für die selbe Elementmenge
- Konflikte können u.U. durch LookAhead in der Syntax-Tabelle gelöst werden

also partielle Vorausschau

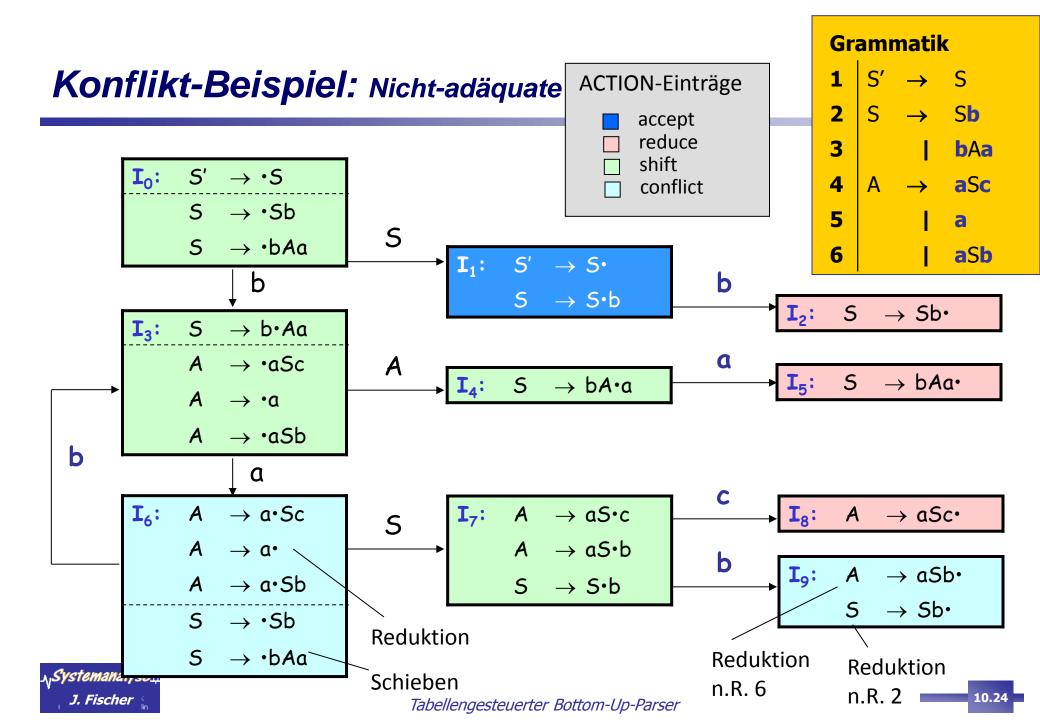

- Falls die LR(0)-Syntaxtabelle **nur einfache** Einträge in der Syntax-Tabelle hat, ist die Grammatik vom Typ **LR(0)**, d.h., es wird kein LookAhead benötigt
- der so konstruierte Parser ist ein LR(0)-Parser
- eine Grammatik ist vom Typ LR(0),
 wenn der charakteristische Automat für diese Grammatik keine nicht-adäquaten Zustände besitzt

4.6.2 LR(0)- Syntaxanalyse

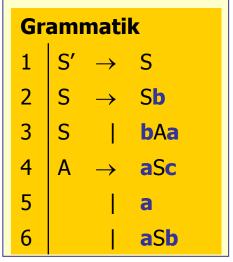
- LR(0)-Elemente und Idee zur Zustandsbildung
- Die Operatoren Closure0 und Goto0
- Kanonische LR(0)-Kollektion, charakteristischer Automat und Übergangstabellenkonstruktion für einen LR(0)-Parser
- Beispiel: Konstruktion eines LR(0)-Parsers
- LR(0)-Konfliktbeispiel

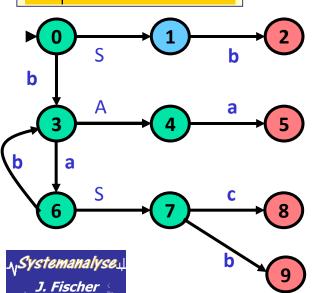
Konflikt-Beispiel: Kanonische LR(0)- Kollektion

→ *Sb


 \rightarrow •bAa

 \rightarrow Sb \cdot


Grammatik


Sb

2

Konflikt-Beispiel: Konstruktion der LR(0)-Syntaxtabelle

Zust		AC	TION			GОТО	
	а	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5	r3	r3	r3	r3	-	-	-
6	r5	s3/r5	r5	r5	-	7	-
7	-	s9	s8	-	-	-	-
8	r4	r4	r4	r4	-	-	-
9	r2/r6	r2/r6	r2/r6	r2/r6	-	-	-

Konflikte nicht behandelbar von LR(0)-Parsern

Unser Ausweg: LookAhead in kritischen Situationen einsetzen

4.6.3 SLR(1) - Syntaxanalyse

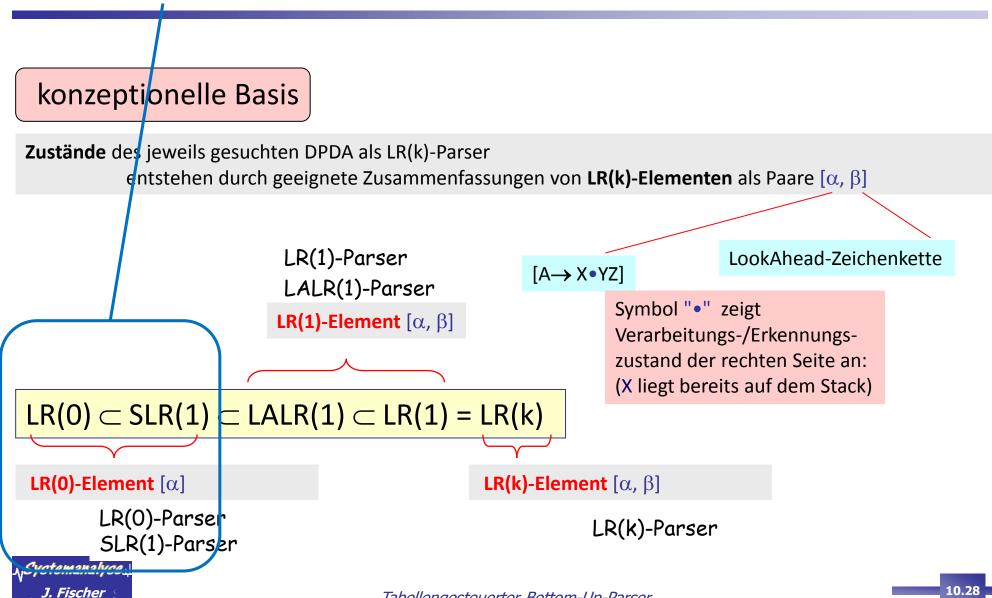
- Konstruktion von SLR(1)-Syntaxtabellen
- Beispiel: SLR(1)-Parser für LR(0)-Konfliktgrammatik
- weiteres Beispiel: SLR(1)-Konstruktion
- SLR(1)-Konfliktbeispiel

Zur Erinnerung (1): Allgemeiner Tabellenkonstruktionsablauf

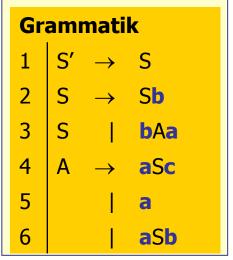
unabhängig von konkreter LR-Technik:

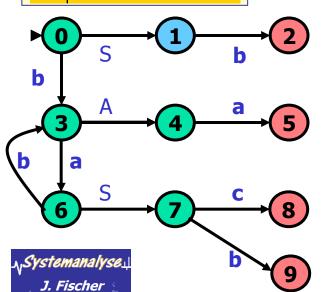
- (1) Hinzufügen einer neuen **Startproduktion** (S' → S) zu G: neue Grammatik G'
- (2) Konstruktion des Zustandsübergangsgraphen des CFSM für Grammatik G'

Zustände entstehen durch Mengenbildung von LR(k)-Elementen


demonstriert bislang für LR(0)_Elemente

Einsatz:


LR(0)-Element einer Grammatik G ist eine Produktion von G verfahrensspezifisch mit einer Bearbeitungs-Markierung (dargestellt als Punkt) in der rechten Seite: z.B. A → X•YZ


(3) Ableitung der Syntaxanalysetabelle aus dem Zustandsübergangsgraphen des DFA

Zur Erinnerung (2): Zustandsabstraktion

Konflikt-Beispiel: Konstruktion der LR(0)-Syntaxtabelle

Zust		AC	TION			GOTO	
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	_
4	s5	-	-	-	-	-	-
5	r3	r3	r3	r3	-	-	-
6	r5	s3/r5	r5	r5	-	7	-
7	-	s9	s8	-	-	-	-
8	r4	r4	r4	r4	-	-	-
9	r2/r6	r2/r6	r2/r6	r2/r6	-	-	-

LookAhead in kritischen Situationen:

Hier zunächst nur FOLLOW-Mengenbestimmung → SLR(1)-Parser

Konstruktion von SLR(1)-Syntaxtabellen

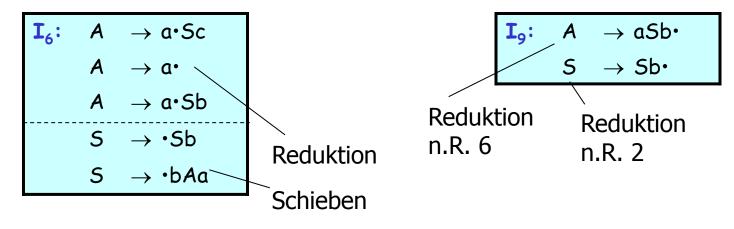
... als Modifikation des LR(0)-Verfahrens

- Konstruktion der **Mengenkollektion** $M = \{I_0, I_1, ..., I_n\}$ von LR(0)-Elementen für G´ bei Identifikation der **Zustände i** des CFSM aus I_i .
- Bestimmung der Aktionen für einen Zustand I_i:
 - a) $[A \rightarrow \alpha \bullet a \beta] \in I_i$ und $goto0(I_i, a) = I_k$, dann **ACTION**[i, a]:= "shift k" a muss dabei ein **Terminalsymbol** sein
 - b) $[A \rightarrow \alpha \bullet] \in I_i \text{ und } A \neq S', \text{ dann } \mathbf{ACTION} [i, \mathbf{a}] := "reduce } A \rightarrow \alpha"$ für alle Terminalsymbole \mathbf{a} von \mathbf{G}' mit $\mathbf{a} \in \mathsf{FOLLOW}(A)$
 - c) $[S' \rightarrow S \bullet] \in I_i$, dann **ACTION** [i, \$] := "accept"

ACHTUNG:

Besonderheit des SLR(1)-Verfahrens

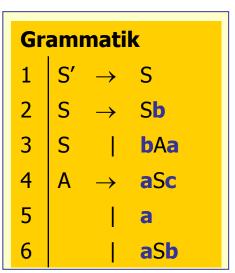
- wenn $goto0(I_i, A) = I_k$ dann **GOTO** [i,A]:= k für **alle Nichtterminale** A von G'
- setze undefinierte Einträge in ACTION und GOTO auf "error"
- Anfangszustand des Parsers (Zustand 0) ist closure $0([S' \rightarrow \bullet S]$

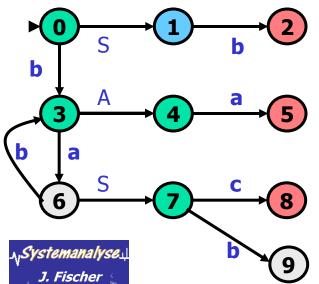


4.6.3 SLR(1) - Syntaxanalyse

- Konstruktion von SLR(1)-Syntaxtabellen
- Beispiel: SLR(1)-Parser für LR(0)-Konfliktgrammatik
- weiteres Beispiel: SLR(1)-Konstruktion
- SLR(1)-Konfliktbeispiel

"altes" Konflikt-Beispiel des LR(0)-Parsers

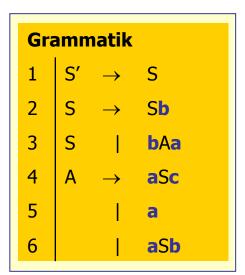

Grammatik 1 $| S' \rightarrow S |$ 2 $| S \rightarrow Sb |$ 3 $| S \mid bAa |$ 4 $| A \rightarrow aSc |$ 5 $| a \mid$ 6 | aSb |

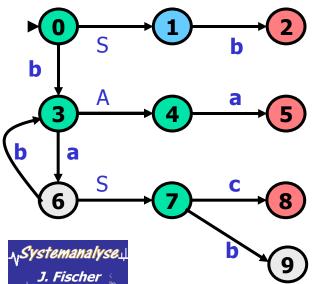


- Aufbau einer LR(0)-Syntaxtabelle scheiterte
- jetzt Aufbau einer SLR(1)-Syntaxtabelle

(LR(0)-Kollektion wird dabei übernommen, d.h. auch der Zustandsübergangsgraph)

LR(0)-Konfliktgrammatik: Konstruktion der SLR(1)-Syntaxtabelle (1)

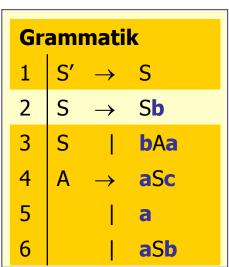



	FOLLOW
S'	{\$}
S	{b, c, \$ }
Α	{a}

10.33

Zust	ACTION				GOTO		
	a	b	С	\$	Α	S	S'
0							
1							
2							
3							
4							
5							
6							
7							
8							
9							

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (2)

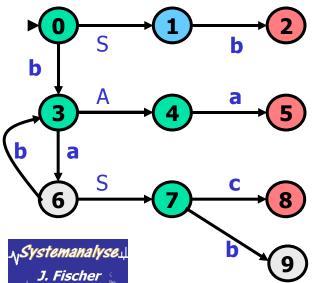


	FOLLOW
S'	{\$}
S	{b, c, \$ }
Α	{a}

Zust	ACTION					GOTO	
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2							
3							
4							
5							
6							
7							
8							
9							

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (3)

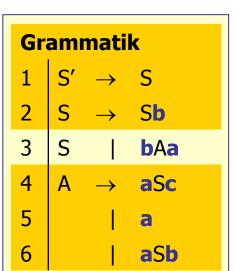


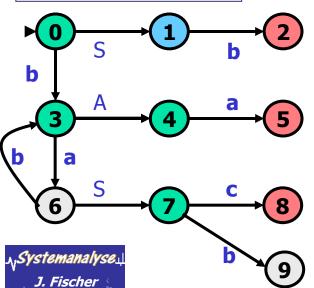

	FOLLOW
S'	{\$}
S	{b, c, \$ }
Α	{a}

S	1
3 A	* (4) a (5)
b a S	C 8
_{Jų} Systemanalyse.↓ J. Fischer \	b 9

Zust		AC	TION			GOTO	
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3							
4							
5							
6							
7							
8							
9							

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (4)

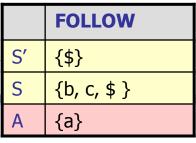




	FOLLOW	
S'	{\$}	
S	{b, c, \$ }	
Α	{a}	

Zust	ACTION				GOTO		
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5							
6							
7							
8							
9							

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (5)

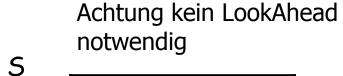

|--|

	FOLLOW		
S'	{\$}		
S	{b, c, \$ }		
Α	{a}		

Zust	ACTION				GOTO		
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5	-	r3	r3	r3	-	-	-
6							
7							
8							
9							

Konflikt-Beispiel: Nicht-adäquate Zu

A


b

a

b

Grammatik 1 $S' \rightarrow S$

4
$$A \rightarrow aSc$$

$$\mathbf{I_1}: \quad S' \quad \to S^{\bullet}$$

$$I_2: S \rightarrow Sb^{\bullet}$$

$$I_3: S \rightarrow b \cdot Aa$$

$$A \rightarrow \cdot aSc$$

→ •S

→ *Sb

 \rightarrow •bAa

b

$$A \rightarrow \cdot a$$

$$A \rightarrow \cdot aSb$$

a

S → bA·a

$$I_5$$
: $S \rightarrow bAa^{\bullet}$

$$I_6: A \rightarrow a \cdot Sc$$

$$A \rightarrow a^{\bullet}$$

$$A \rightarrow a.5b$$

$$S \rightarrow \cdot Sb$$

$$S \rightarrow \cdot bAa_{-}$$

$I_7: A \rightarrow aS \cdot c$

$$A \rightarrow aS \cdot b$$

$$S \rightarrow S \cdot b$$

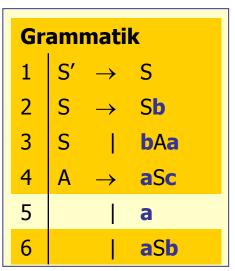
$$C$$
 I₈: $A \rightarrow aSc$ •

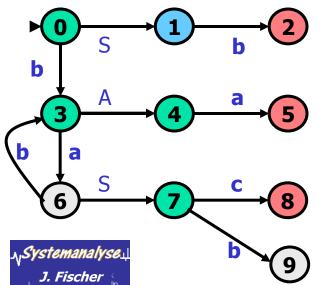
$$I_9: A \rightarrow aSb$$

$$5 \rightarrow 5b$$

Reduktion nur für **a** (aus FOLLOW(A))

Schieben für **b**

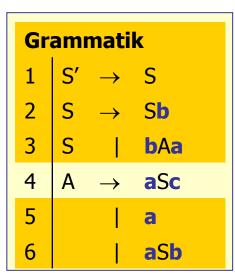

Tabellengesteuerter Bottom-Up-Parser


Systemana., 3044 __J. Fischer 🕍

b

10.38

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (6)

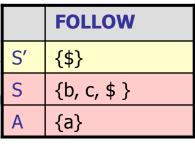


	FOLLOW		
S'	{\$}		
S	{b, c, \$}		
Α	{a}		

Zust		AC	TION			GOTO	
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5	-	r3	r3	r3	-	-	-
6	r5	s3			-	7	-
7							
8							
9							

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (7)

	FOLLOW		
S'	{\$}		
S	{b, c, \$ }		
Α	{a}		

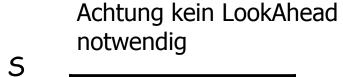

b S	1 b
3 A	4 a 5
6 S	7
<i>_{Ay}Systemanalyse</i> .↓	b 9

Zust	ACTION				GOTO		
	а	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5	-	r3	r3	r3	-	-	-
6	r5	s3			-	7	-
7	-	s9	s8	-	-	-	-
8	r4	-	-	-	-	-	-
9							

Konflikt-Beispiel: Nicht-adäquate Zu

A

S



b

Grammatik

$$\mathbf{1} \quad | \quad \mathsf{S'} \quad \rightarrow \quad \mathsf{S}$$

$$\mathbf{2} \quad | \quad \mathsf{S} \quad \rightarrow \quad \mathsf{Sb}$$

$$\mathbf{I_1}: \quad \mathsf{S'} \quad \to \; \mathsf{S^{\bullet}}$$

S

$$S \rightarrow S \cdot b$$

$$I_2$$
: $S \rightarrow Sb^{\bullet}$

$$I_3$$
: $S \rightarrow b \cdot Aa$

$$A \rightarrow \cdot aSc$$

→ •Sb

 \rightarrow •bAa

b

$$A \rightarrow \cdot a$$

$$A \rightarrow \cdot aSb$$

a

$$\rightarrow bA \cdot a$$

$$I_5$$
: $S \rightarrow bAa$ •

$$I_6: A \rightarrow a \cdot Sc$$

$$A \rightarrow a^{\bullet}$$

$$A \rightarrow a.5b$$

$$5 \rightarrow bAa$$

$$I_7: A \rightarrow aS \cdot c$$

$$A \rightarrow aS \cdot b$$

$$S \rightarrow S \cdot b$$

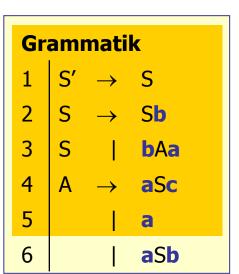
$$C$$
 $I_8: A \rightarrow aSc$

$$I_9: A \rightarrow aSb$$

$$S_{i} \rightarrow Sb^{\bullet}$$

Reduktion n.R. 6 nur für a

b

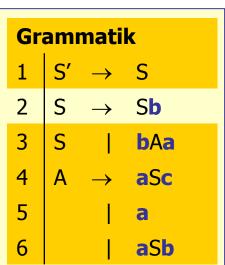

Reduktion n.R. 2 nur für **b, c, \$**

J. Fischer

b

Tabellengesteuerter Bottom-Up-Parser

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (8)


I ₉ :	Α	→ aSb•
	5	→ Sb•

	FOLLOW				
S'	{\$}				
S	{b, c, \$}				
Α	{a}				

b S	1	b 2
3 A	- 4	a 5
b a S	7	C 8
<i>ĄSystemanalyse</i> ↓↓ , <i>J. Fischer</i> ∖ှ		b 9

Zust	ACTION					GOTO	
	а	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5	-	r3	r3	r3	-	-	-
6	r5	s3			-	7	-
7	-	s9	s8	-	-	-	-
8	r4	-	-	-	-	-	-
9	r6						

"altes" Beispiel: Konstruktion der SLR(1)-Syntaxtabelle (9)

I ₉ :	Α	→ aSb•	
	5	→ Sb•	

		FOLLOW		
	Š	{\$}		
	S	{b, c, \$ }		
	Α	{a}		
COTO				

S	+1	b 2
3 A	+4	a 5
b a S	+7	C 8
Ą <i>Systemanalyse</i> ↓		b 9

Zust	ACTION					GOTO	
	a	b	С	\$	Α	S	S'
0	-	s3	-	-	-	1	-
1	-	s2	-	acc	-	-	-
2	-	r2	r2	r2	-	-	-
3	s6	-	-	-	4	-	-
4	s5	-	-	-	-	-	-
5	-	r3	r3	r3	-	-	-
6	r5	s3			-	7	-
7	-	s9	s8	-	-	-	-
8	r4	-	-	-	-	-	-
9	r6	r2	r2	r2	-	-	-

4.6.3 SLR(1) - Syntaxanalyse

- Konstruktion von SLR(1)-Syntaxtabellen
- Beispiel: SLR(1)-Parser für LR(0)-Konfliktgrammatik
- weiteres Beispiel: SLR(1)-Konstruktion
- SLR(1)-Konfliktbeispiel

Beispiel: Kanonische SLR(1)-Kollektion (1)

Grammatik

- 1) $S' \rightarrow E$
- 2) $E \rightarrow E + T$
- 3) | T
- 4) $T \rightarrow T * F$
- 5) | F
- 6) $F \rightarrow (E)$
- 7) | id

	FOLLOW
Е	{+,)}
Τ	{+, *,)}
F	{+, *,) }

$$I_0$$

$$S' \rightarrow \cdot E$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot id$$

$$I_1$$

$$S' \to E^{\bullet}$$

$$E \to E^{\bullet} + T$$

$$I_{2}$$

$$E \rightarrow T^{\bullet}$$

$$T \rightarrow T^{\bullet} * F$$

$$I_{3}$$

$$T \rightarrow F^{\bullet}$$

$$I_{4}$$

$$F \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow (\cdot E)$$

 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot id$

$$I_5$$
 $F \rightarrow id^{\bullet}$
 I_6

$$E \rightarrow E + \cdot T$$

 $E \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot id$

$$I_{7}$$

$$T \rightarrow T * \cdot F$$

$$F \rightarrow \cdot (E)$$

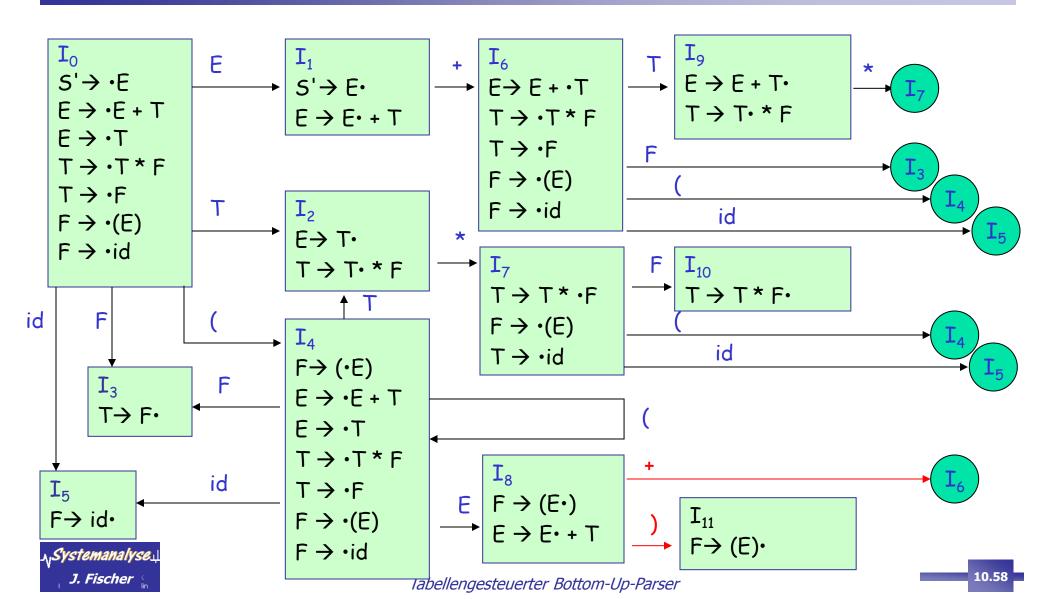
$$F \rightarrow \cdot id$$

$$I_{8}$$

$$F \rightarrow (E \cdot)$$

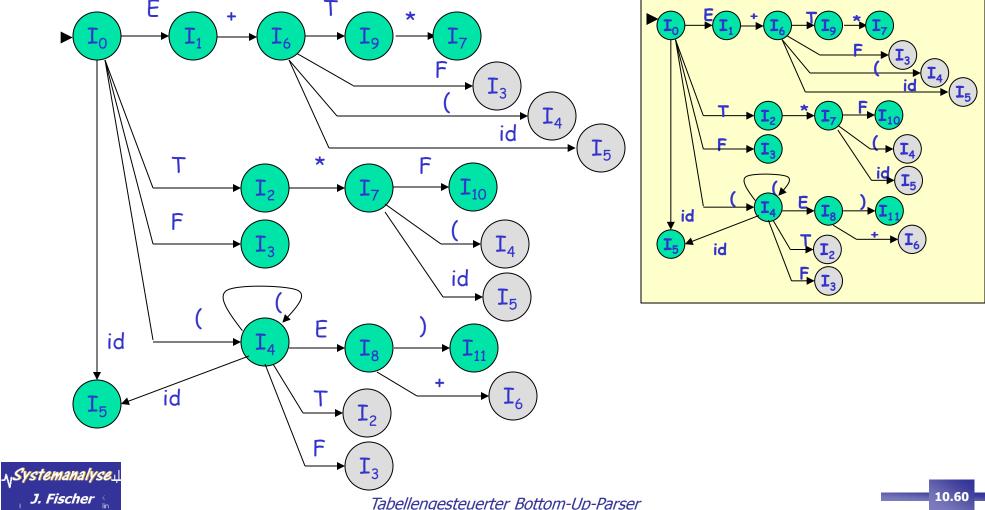
$$E \rightarrow E \cdot + T$$

$$I_9$$


$$E \rightarrow E + T \cdot \cdot$$

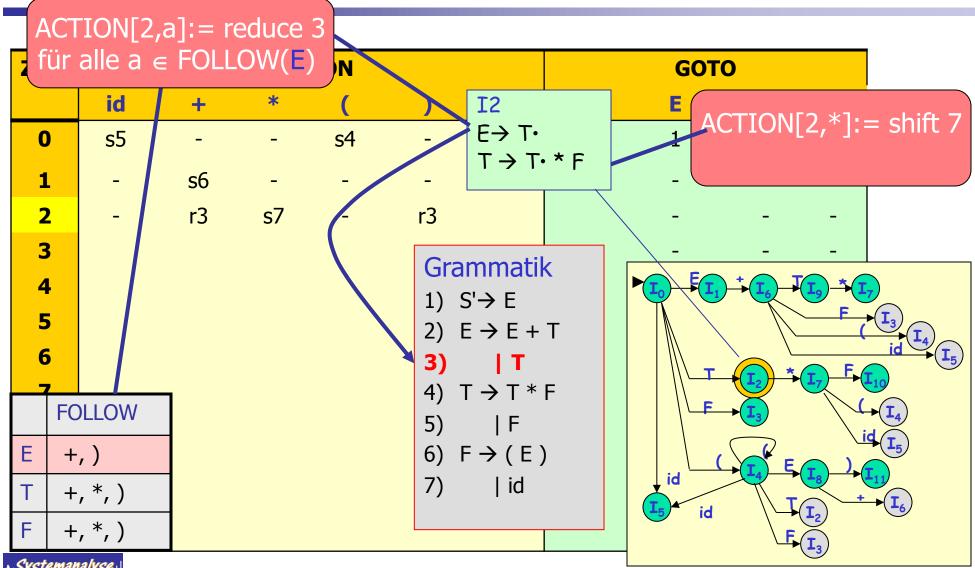
$$T \rightarrow T \cdot * F$$

$$I_{10}$$

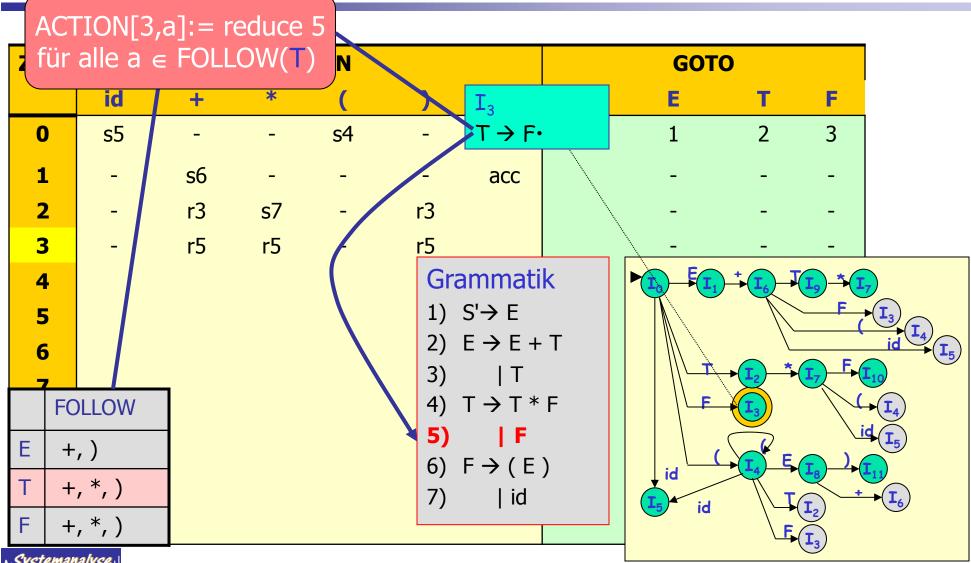

$$T \rightarrow T * F \cdot$$

Beispiel: Kanonische SLR(1)-Kollektion (14)

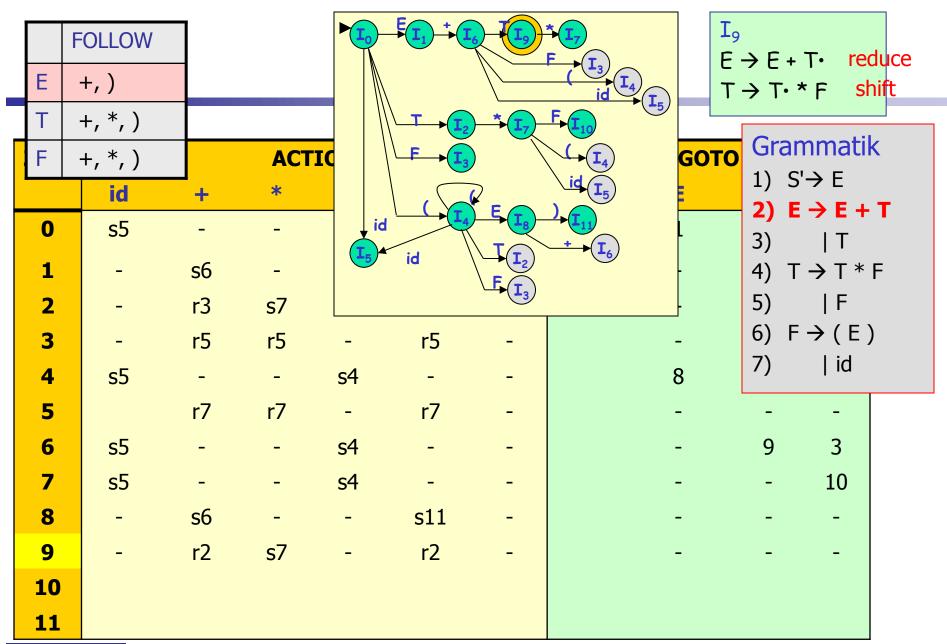
ACTION-Einträge accept Beispiel: Kanonische SLR(1)-Kollektion (15) reduce shift conflict I_0 I_9 I_6 E $S' \rightarrow \cdot E$ $E \rightarrow E + T$ $E \rightarrow E + \cdot T$ $E \rightarrow \cdot E + T$ $T \rightarrow T \cdot * F$ $E \rightarrow E \cdot + T$ $T \rightarrow \cdot T * F$ $E \rightarrow \cdot T$ $T \rightarrow \cdot F$ $T \rightarrow \cdot T * F$ $F \rightarrow \cdot (E)$ $T \rightarrow \cdot F$ I_2 $F \rightarrow \cdot id$ id $F \rightarrow \cdot (E)$ F → T. F → ·id I_7 I_{10} $T \rightarrow T \cdot * F$ T → T* •F $T \rightarrow T * F$ **↑** T id $F \rightarrow \cdot (E)$ I_4 id $T \rightarrow \cdot id$ F → (·E) I_3 $E \rightarrow \cdot E + T$ T→ F• $E \rightarrow \cdot T$ $T \rightarrow \cdot T * F$ I₈ id $T \rightarrow \cdot F$ I_5 $F \rightarrow (E \cdot)$ F→ id• $F \rightarrow \cdot (E)$ $E \rightarrow E \cdot + T$ F → (E)· $F \rightarrow \cdot id$ *⊾Systemanalyse*⊥ J. Fischer 10.59 Tabellengesteuerter Bottom-Up-Parser


Beispiel: Kanonische SLR(1)-Kollektion (16)

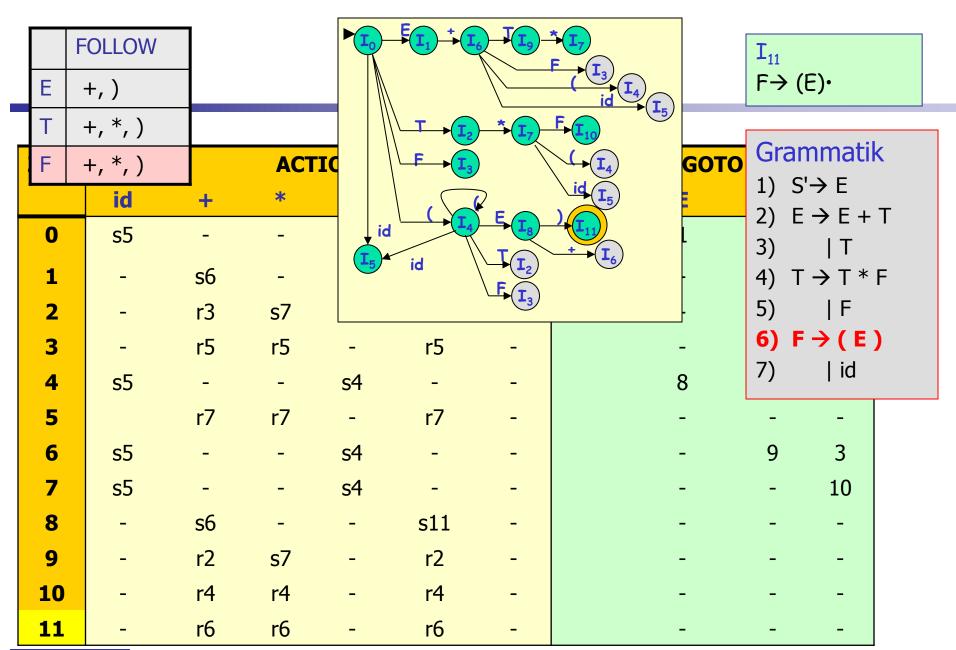
Beispiel: Aufbau einer SLR(1)-Syntaxtabelle (2)


Zust			AC1	ΓΙΟΝ				GOT	0		
	id	+	*	()	\$		E	T	F	
0	s5	-	-	s4	-	-		1	2	3	
1	-	s6	-	-	-	acc		-	-	-	
2											
3											
4								I ₀	I ₆	I ₉ ★I ₇	
5										F ((I_3)
6								*	F	id 💙	
7								\\	1	1	19 T.
8										ic	
9								(T ₄ E	(I ₈)	11)
10								I ₅ id		I ₂	► [6]
11									F	(I ₃)	

Beispiel: Aufbau einer SLR(1)-Syntaxtabelle (3)



_NSystemanalyse↓ J. Fischer ၙ


Beispiel: Aufbau einer SLR(1)-Syntaxtabelle (5)

_NSystemanalyse↓ J. Fischer ၙ

LR(0)- und SLR(1)-Parser-Konstruktion

(Zusammenfassung)

LR(0)-Parserkonstruktion

- LR(0)-Elemente
- Startproduktion \rightarrow 1.LR(0)-Element
- Hüllenbildung (1.LR(0)-Element → Startzustand vom CFSM) mit closure0
- Anwendung von goto0 für alle Grammatiksymbole und Zustände
- LR(0)-Verfahren zur Konstruktion der Syntaxanalysetabelle

```
[A \rightarrow \alpha \bullet] \in I_i \text{ und } A \neq S',
\text{dann ACTION } [i,a] := \text{"reduce } A \rightarrow \alpha''
\text{für alle Terminale a von } G
```

SLR(1)-Parserkonstruktion

- LR(0)-Elemente
- Startproduktion \rightarrow 1.LR(0)-Element
- Hüllenbildung (1.LR(0)-Element → Startzustand vom CFSM) mit closure0
- Anwendung von goto0 für alle Grammatiksymbole und Zustände
- SLR(1)-Verfahren zur Konstruktion der Syntaxanalysetabelle

```
[A \rightarrow \alpha \bullet] \in I_i \text{ und } A \neq S',

dann ACTION [i,a] := \text{"reduce } A \rightarrow \alpha \text{"}

für alle Terminale a \in \text{FOLLOW}(A)
```

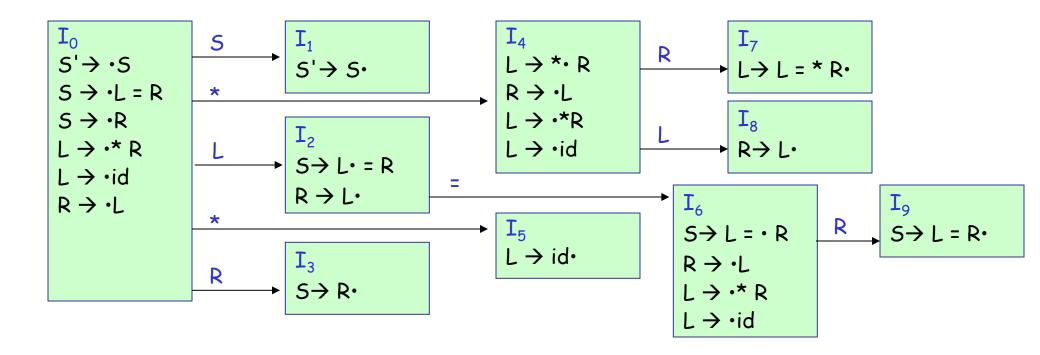

4.6.3 SLR(1) - Syntaxanalyse

- Konstruktion von SLR(1)-Syntaxtabellen
- Beispiel: SLR(1)-Parser für LR(0)-Konfliktgrammatik
- weiteres Beispiel: SLR(1)-Konstruktion
- SLR(1)-Konfliktbeispiel

SLR(1)-Grammatik

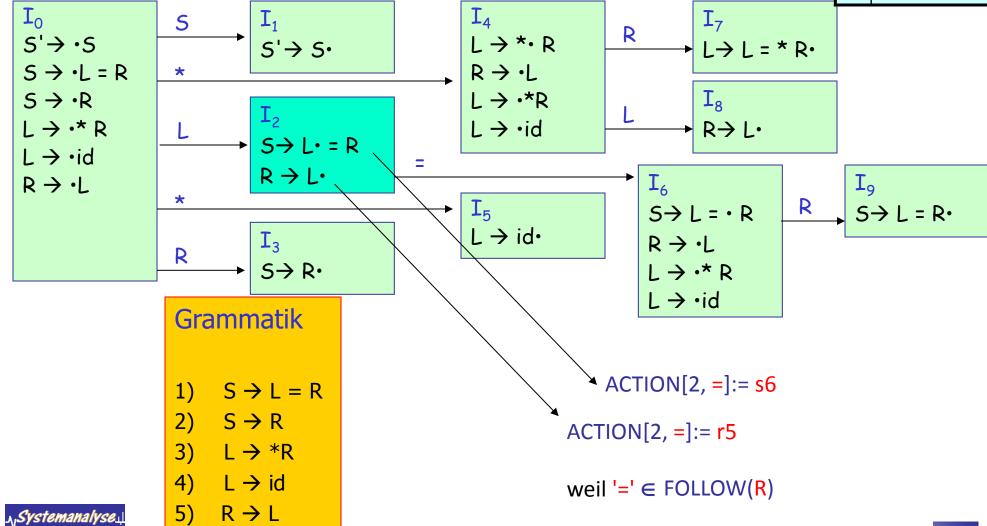
- Jede SLR(1)-Grammatik ist eindeutig
- aber nicht jede eindeutige Grammatik ist vom SLR(1)-Typ

Beispiel


Grammatik

1	2	\rightarrow	L = 1	R
Т,	ı s		L —	$\boldsymbol{\Gamma}$

- 2) $S \rightarrow R$
- 3) $L \rightarrow *R$
- 4) $L \rightarrow id$
- 5) $R \rightarrow L$


	FOLLOW
S	
П	
R	, =

Eindeutige, aber dennoch Konflikt-Grammatik für SLR(1)

CFS für Konflikt-Grammatik

	FOLLOW
S	
L	
R	, =

Zwischenfazit

Grammatik

- 1) $S \rightarrow L = R$
- 2) $S \rightarrow R$
- 3) $L \rightarrow *R$
- 4) $L \rightarrow id$
- 5) $R \rightarrow L$

- Grammatik ist nicht vom Typ SLR(1)
- → SLR-Parser (d.h. deren Grammatiken sind nicht mächtig genug, um gängige Programmiersprachkonstrukte behandeln zu können)

FOLLOW-Menge ist eine zu grobe Orientierung

4.6.4 LR(1) - Syntaxanalyse

Das LR(1)-Verfahren wird gelegentlich auch als kanonisches LR-Verfahren bezeichnet

- Motivation für LR(1)-Elemente
- Von FOLLOW-Mengen zu Look-Ahead-Betrachtungen
- Konstruktion von LR(1)-Elementen mittels closure1 und goto1
- Beispiel: LR(1)-Parser
- Beispiel: Behandlung der SLR(1)-Konfliktgrammatik mit LR(1)

LookAhead-Mengen statt FOLLOW-Mengen

FOLLOW-Menge:

enthält alle Symbole, die einem <u>Nichtterminalsymbol</u> potentiell in jedem möglichen Kontext folgen können

Zustandsmaschine muss aber sensibler eingestellt werden

- man müsste sich nur auf die Terminalsymbole konzentrieren, die dem Nichtterminal in Abhängigkeit von der Position im Zustandsübergangsdiagramm folgen können
- Menge relevanter LookAhead-Symbole ist eine Teilmenge der FOLLOW-Menge

Erweiterungsprinzip

Ziel: Erweiterung des Zustandes um LookAhead-Informationen, die Konflikte vorab ausschließen:

jeder Zustand eines LR-Parsers soll genau anzeigen, welche **Eingabesymbole** einem Handle α folgen dürfen, für den es eine Reduktion $A \rightarrow \alpha$ gibt

Weg: LR(k)-Elemente mit $k \ge 1$

Erinnerung:

Ein **LR(k)-Element** ist ein Paar $[\alpha, \beta]$, wobei

- α eine Produktion der Grammatik G ist mit einer Markierung "•" in der RS der Regel,
 die anzeigt, wie viel von der RS einer Produktion schon erkannt worden ist
- β ist die LookAhead-Zeichenkette, die k Symbole (Terminalsymbole oder "\$") umfasst

Was sind LR(1)-Elemente?

- LR(1)-Elemente haben die Form [A→ X•YZ, a]
- alle LookAhead-Zeichenketten a haben die Länge 1

LR(1)-Elemente

dienen als

Basis für Entscheidung: Schieben oder Reduzieren

sie werden dabei nur für End-Situationen gebraucht:

- für [A→ X•YZ, a] hat a keine Bedeutung für die Entscheidung
- für [A→ XYZ•, a] ist a dagegen wichtig
- Basis für Entscheidung, wonach reduziert werden soll:

für $[A \rightarrow \alpha \bullet, a]$ und $[B \rightarrow \alpha \bullet, b]$ kann entschieden werden, ob nach A oder B zu reduzieren ist, und zwar abhängig von einem rechten, begrenzten Kontext

erlauben den Einsatz von Grammatiken zur Sprachdefinition, die nicht »eindeutig invertierbar« sind

es gibt mindestens zwei Regeln mit derselben RS

LR(1)-Elemente (Forts.)

$$\blacksquare [S' \rightarrow \bullet S, \quad $]$$

LR(0)-Element (**Kern**)

gültige LookAhead-Symbole eines Kerns bilden die so genannte LookAhead-Menge (Berechnung und Angabe erfolgt **pro Regel** und nicht mehr generell als FOLLOW-Menge des Meta-Symbols)

Lesart:

Bei der Bearbeitung der Regel S' \rightarrow S befinden wir uns noch **vor** dem S.

Sollten wir irgendwann die gesamte rechte Seite (also S) verarbeitet haben, so wird nach dieser Regel reduziert, **aber** nur unter der Voraussetzung, dass das nächste <u>Eingabezeichen</u> ein Element der <u>LookAhead-Menge</u> ist

Grammatik

bAa

aSb

 \rightarrow aSc

3

4

6

LR(1)-Elemente (Forts.)

zwei LR(1)-Elemente

- $[\alpha \rightarrow \bullet \beta, b]$

sind verschieden, auch wenn sie sich nur in der LookAhead-Menge unterscheiden sollten

> wichtig für die Zustandskonstruktion des charakteristischen endlichen Automaten

FAZIT im Vergleich: SLR(1) – LR(1)

Frage: Wann wird reduziert?

SLR(1)-Analyse:

FOLLOW-Menge entscheidet, ob das nächste Terminalsymbol dem Nichtterminalsymbol, zu dem reduziert werden soll, überhaupt folgen darf: gehört es zur FOLLOW-Menge, wird reduziert.

LR(1)-Analyse:

LookAhead-Menge entscheidet,

ob das nächste Terminalsymbol dem Nichtterminalsymbol, zu dem reduziert werden soll, nach Anwendung der Reduktionsregel folgen darf:

gehört es zur LookAhead-Menge, wird reduziert.

Unterschied:

Man betrachtet bei LR(1) nicht mehr Mengen von Terminalsymbolen, die einem Nichtterminal generell folgen dürfen, sondern nur solche, die diesem Nichtterminal nach Anwendung einer bestimmten **Reduktionsregel** folgen dürfen.

